

Application of Thomas–Reiche–Kuhn Sum Rule to the Parametrization of JDOS of **Hydrogenated Amorphous Silicon**

DANIEL FRANTA^{*a*}, DAVID NEČAS^{*a*}, LENKA ZAJÍČKOVÁ^{*a*}, JIŘÍ STUCHLÍK^b, DAGMAR CHVOSTOVÁ^b, IVAN OHLÍDAL^a,

^aDepartment of Physical Electronics, Faculty of Science, Masaryk University, Brno, Czech Republic e-mail: franta@physics.muni.cz

^bInstitute of Physics AS CR, Prague, Czech Republic

Electronic structure

-		К	L	$\sigma,\lambda,\lambda^*,\sigma^*$	ξ^*
	Si	1s	2s, 2p	3s, 3p	$3d, 4s, 4p, \ldots$
	Н	—	_	1s	$2s, 2p, 3s, \dots$

Excitations of electrons $\sigma \rightarrow \lambda^*$ and $\lambda \rightarrow \sigma^*$ – Urbach tail (UT4)

The absortion below the bad gap is modeled using exponential Urbach tail smootly extended by a second-order polynomial $P_2(E)$:

$$\varepsilon_{\rm i}(E) = \frac{J(E)}{E^2} = {\rm sgn}(E) \times$$

$$\begin{cases} \frac{N_{\sigma\lambda}}{CE^2} \left[\exp\left(\frac{E-E_{\rm g}}{E_{\rm u}}\right) - \exp\left(-\frac{E_{\rm g}}{2E_{\rm u}}\right) \right] & \text{for } \frac{E_{\rm g}}{2} < |E| < E_{\rm g} \\ \frac{N_{\sigma\lambda}}{CE^2} \left[P_2(E) - \exp\left(-\frac{E_{\rm g}}{2E_{\rm u}}\right) \right] & \text{for } E_{\rm g} \le |E| \le E_{\rm h} \\ \frac{N_{\sigma\lambda}}{CE^2} \left[\exp\left(\frac{E_{\rm h}-E}{E_{\rm u}}\right) - \exp\left(-\frac{E_{\rm g}}{2E_{\rm u}}\right) \right] & \text{for } E_{\rm h} < |E| < E_{\rm h} + \frac{E_{\rm g}}{2} \\ 0 & \text{otherwise.} \end{cases}$$

Integrations leads to **exponential integral** functions in $\varepsilon_{\rm r}(E)$.

Excitations of electrons
$$\sigma \to \xi^*$$
 (HET2)
 $\varepsilon_{i}(E) = \frac{J(E)}{E^2} = \begin{cases} 0 & \text{for } |E| \le E_{g\xi} \\ N_{\sigma\xi} \frac{3E_{g\xi}(|E| - E_{g\xi})^2}{E^5} & \text{for } |E| > E_{g\xi} \end{cases}$
 $\varepsilon_{r}(E) - 1 = N_{\sigma\xi} \frac{3E_{g\xi}}{\pi E^2} \left[a(E) \ln \left| 1 - \frac{E}{E_{g\xi}} \right| + b(E) \ln \left| 1 + \frac{E}{E_{g\xi}} \right| - c - \frac{d}{E^2} \right]$
where
 $a(E) = -\frac{(E_{g\xi} - E)^2}{E^3}, \quad b(E) = \frac{(E_{g\xi} + E)^2}{E^3}, \quad c = \frac{2}{3E_{g\xi}}, \quad d = 2E_{g\xi}$

Comparison with c-Si

Log-log plot of optical constants of crystalline and amorphous silicon.

JDOS function of a-Si:H

Schematic diagram of electronic structure of amorphous silicon.

Electronic structure of crystalline and amorphou silicon calculated using tight-binding method [1] and [2].

Experiment

Density of the valence electrons (optical electron density)

$$N_{\rm v} = \int_0^\infty \sum_{j=\sigma,\lambda} \sum_{k=\lambda^*,\sigma^*,\xi^*} E \,\varepsilon_{{\rm i},j\to k}(E) \,\mathrm{d}E \qquad ({\rm eV}^2)$$

$$N_{\rm v} = N_{\sigma\sigma} + N_{\sigma\lambda} + N_{\sigma\xi}$$

Excitations of core electrons $K, L \rightarrow \sigma^* + \xi^*$ (CEE2)

$$\varepsilon_{i}(E) = \frac{J(E)}{E^{2}} = \begin{cases} 0 & \text{for } |E| < E_{k} \\ N_{k} \frac{E_{k}}{E^{3}} & \text{for } |E| \ge E_{k} \end{cases}$$
$$\varepsilon_{r}(E) - 1 = \frac{N_{k}}{\pi E^{3}} \left[E_{k} \ln \left| \frac{E_{k} + E}{E_{k} - E} \right| - 2E \right]$$

Density of the K and L core electrons

$$N_{\rm K} = 2N_{\rm v} \frac{1-C_{\rm H}}{4-3C_{\rm H}}$$
 and $N_{\rm L} = 8N_{\rm v} \frac{1-C_{\rm H}}{4-3C_{\rm H}}$

where $C_{\rm H}$ is atomic concentration of hydrogen (for our sample $C_{\rm H} = 0.11$)

Phonon absorption peaks (GP3)

Modeled by Gausian peaks leading to **Dawson integrals** in $\varepsilon_{\rm r}(E)$.

Tauc-Lorentz model

For renormalized Tauc-Lorentz model see poster devoted to DLC.

Results

Comparison of joint density of states determined using different models.

Total optical density of the electrons

$$N_{\rm e} = N_{\rm v} + N_{\rm K} + N_{\rm L} = N_{\rm v} \frac{14 - 13C_{\rm H}}{4 - 3C_{\rm H}} \qquad ({\rm eV}^2)$$

Relation to plasma frequency $\omega_{\rm p}$

for
$$E \to \infty$$
, $\varepsilon_{\rm r}(E) \approx 1 - \frac{2N_{\rm e}}{\pi E^2} = 1 - \frac{(\hbar\omega_{\rm p})^2}{E^2} = 1 - \frac{\omega_{\rm p}^2}{\omega^2}$

$$N_{
m e} = rac{\pi}{2} (\hbar \omega_{
m p})^2$$

Optical density of atoms

$$N_{\rm a} = \frac{N_{\rm e}}{14 - 13C_{\rm H}} = \frac{N_{\rm v}}{4 - 3C_{\rm H}} \qquad ({\rm eV}^2)$$

Real electron density

$$\mathcal{N}_{\rm e} = 4.617 \cdot 10^{26} N_{\rm e} \qquad (1/{\rm m}^3)$$

Mass density of the a-Si:H films

$$\varrho = \mathcal{N}_{\mathrm{a}} \Big[A_{\mathrm{Si}} (1 - C_{\mathrm{H}}) + A_{\mathrm{H}} C_{\mathrm{H}} \Big] u \qquad (\mathrm{kg/m^3})$$
$$\mathcal{N}_{\mathrm{a}} = 4.617 \cdot 10^{26} N_{\mathrm{a}}$$

- \mathcal{N}_{a} density of atoms (1/m³)

Modeling

All individual contributions of the PJDOS model are modeled using analytical Kramers-Kronig consistent functions.

Interband transitions $\sigma \rightarrow \sigma^*$ (IBTL5)

Combination of parabolic bands with Lorentzian function. $\varepsilon_{\rm i}(E) = \frac{J(E)}{E^2} = \begin{cases} N_{\sigma\sigma} \frac{(|E| - E_{\rm g})^2 (|E| - E_{\rm h})^2}{CE[(E^2 - E_{\rm c}^2)^2 + B_{\rm c}^2 E^2]} & \text{for } E_{\rm g} < |E| < E_{\rm h} \end{cases}$ otherwise.

where C is normalization constant chosen that the following holds:

$$N_{\sigma\sigma} = \int_0^\infty E \,\varepsilon_{\rm i}(E) \,\mathrm{d}E$$

The real part is calculated from Kramers–Kronig integral:

$$\varepsilon_{\rm r}(E) - 1 = \frac{2}{\pi} \int_0^\infty \frac{X \,\varepsilon_{\rm i}(X)}{X^2 - E^2} \,\mathrm{d}X$$

It leads to cobinations of **logaritmic** and **rational** functions similarly to the Tauc–Lorentz model (see poster devoted to DLC).

Optical constants of a-Si:H films determined using different models.

		N_{c}	$\sigma\sigma$	E	'g	E	r c	$E_{\rm h}$	-	$B_{ m c}$	N_{σ}	·ξ	$E_{\rm g}$	ξ
	model	(eV	$^{/2})$	(e^{r})	V)	(e^{r})	V)	(eV)) (e	eV)	(eV	$^{2})$	(eV	7)
Tai	uc–Lorentz	421	.4	1.4	86	3.6	21		1.	929	_			
	PJDOS	316	6.0	1.6	69	3.5	87	20^{*}	2.	355	102	.6	5.87	78
			N	$\sigma\lambda$	I	E_{u}	1	E_{K}	E_{I}	_	C_{H}	2	K	
	model		(e^{V})	$V^2)$	(e	V)	$(\epsilon$	eV)	(eV	7)				
-	Tauc-Lore	ntz	()	-	_	1.8	842*	103	3 * ()	.11*	2.	38	
	PJDOS		6	.2	0.0)36	1.8	842*	103	3 * 0	.11*	1.	38	

* fixed parameter

Quantity χ characterizes the disagreement between theoretical and experimental data (1 is optimum)

• $A_{\rm Si}$ silicon atomic weight (28.09 g/mol)

- $A_{\rm H}$ hydrogen atomic weight (1.008 g/mol)
- u atomic mass unit $(1.6605 \cdot 10^{-27} \text{ kg})$

	$N_{\rm v}$	$N_{\rm e}$	$N_{\rm a}$	\mathcal{N}_{e}	\mathcal{N}_{a}	Q
model	(eV^2)	(eV^2)	(eV^2)	$(1/m^{3})$	$(1/m^{3})$	(kg/m^3)
Tauc–Lorentz	421.4	1443	114.8	$6.664 \cdot 10^{29}$	$5.302 \cdot 10^{28}$	2211
PJDOS	424.8	1455	115.7	$6.718 \cdot 10^{29}$	$5.344 \cdot 10^{28}$	2228

Compare with density of the c-Si: $\rho = 2329 \, \text{kg/m}^3$

Acknowledgments

This work was supported by Czech Ministry of Education project MSM 002162241; European Regional Development Fund project CZ.1.05/2.1.00/03.0086; and by Czech Ministry of Trade project FR-TI1/168.

References

[1] D. J. Chadi, M. L. Cohen, Phys. Status Solidi B 68 (1975) 405–419.

[2] H. C. Kang, J. Non-Cryst. Solids 261 (2000) 169–180.